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Lyapunov Stability for Linear Autonomous Systems

The linear autonomous system 1s given by

x'= Ax. (10.1)

If all eigenvalues of 4 satisty Red <0, A4 1ssaid a Hurwitz matrix.

1) Lyapunov Method

Consider a quadratic Lyapunov function candidate
V(ix)=x"Px,

where P 1s areal symmetric positive definite matrix.




The derivative of 77 along the trajectories of (10.1) 1s given by
A
V'(ix)=x"Px' +x""Px=x"(PA+ A"P)x=—x"0x.
where Q 1s a symmetric matrix defined by
PA+4"P=-0. (10.2)

If O 1spositive definite. we conclude by Theorem 9.1 that the origin 1s AS.

Remark 10.1 (10.2) 1s called a Lyapunov equation of (10.1).

Theorem 10.1 4 1s Hurwitz if and only if for any given positive definite symmetric

matrix O, there exists a positive definite symmetric matrix P that satisfies (10.2).

Moreover, P 1s unique for each given Q 1n (10.2).




Proof. (<) (Sufficiency) It 1s done by Theorem 9.1.
(=) (Necessity) If 4 1s Hurwitz, define

P=| :exp(Arf)Qexp(Af) dt . (10.3)

This integral (10.3) is well defined (convergent) because A4 is Hurwitz. P* =P by
definition. To show that P 1s positive definite, we use contradiction. If there were

x#0 such that the quadratic formis x”Px=0. Then.

xTPx=0 = j:exp(fr)gexp(m)dr —0 = exp(A)x=0, V>0 = x=0.
This contradiction shows that P 1s positive definite. Since

PA+ATP= ': exp(471) Qexp(Ar) Adr + : AT exp(AT1) O exp(Af)dt

- .:%exp(fi 1) Qexp(An)dt =exp(A1) Qexp(Ar) [7=-0.




which shows that P 1s a solution of (10.2). To show uniqueness. suppose there is

another solution P # P . Then.
(P-P)A+ A" (P-P)=0.
Pre-multiplying by exp(47#) # 0 and post-multiplying by exp(A4¢)# 0. we obtain
0=exp(AH)[(P-P)A+ AT (P—P)lexp(At) = %exp(fff)(P — P)exp(At).

Hence,

exp(A7t)(P—P)exp(At) =Constant, ¥V 7>0.
Since exp(A7t)(P—P)exp(At) >0 as t—> =, then
exp(A7t)(P— P)exp(A4r)=0.

Therefore. P=P . O




Linear Autonomous System with Perturbation
Consider
x'=Ax+g(t. x). (10.4)
where g(7. x) 1s continuous and locally Lipschitz m U containing the origin.

Theorem 10.2 (Stability Theorem) Let g(7. x) 1s continuous and locally Lipschitz
m U containing the origin. If

lim &GO
K=o || x|

holds uniformly mn 7, where 1>7,>0 and 4 has all eigenvalues with negative

real part, ie. Red (4)<0 for j=12--.n, then x=0 of (10.4) is uniformly

asymptotically stable.




Proof. Since lim @ x)ll

™ =0 holds uniformly in 7. there exists £ >0 for any
[|x][ =0 X

given b >0 such that

| g(t,x)||<b|[x] forall +=0,
provided ||x|[<&. Then g(.0)=0 for all +>0, 1.e. x=0 1s equilibrium of
(10.4). Since Red;(4)<0 for j=12.---,n, we can find K>0 and x>0
(Clue: using the formula of e™)s.t.

e || <K e™ ™ for t>1,.
For ||x,[[<¢& :% and 7, >0. there exists a unique solution of (10.4). denoted by

x(t,t,,x,) for te[t,.®,). We show that @, =o. We can get the equivalent

integral form as follows.




x(t,ty, x,) = e:z’sl‘(“_”'}sa:,}+J.r e g (s, x(s.t,.x,))ds. te[t,, @,).
fo
Then,
—u(t=tg) ! — it (t—s
| x(t.t0. %) || < Ke™™ || xy || +] Ke™ ™| g(s. x(s.10. x,)) llds . 1€[ 1. ,).

If [[x(7.f,,x,)||<e forall t€[f,.®,). then

| 8. (0. 10 x VIS BIIX(E. 10, 3) ], 1€ 1, @)
So we have

(- t
|x(t by x) < Ke™ 0 || xy ||+KB[ e || x(s.t0.3%,) lds. te[ty.,).
Iy

to

Multiplying e”“™ on both sides, we have

_ t .
" || x(t 1y, xo) | < K || x, | +ijrue“( | x(s.to. %) llds . telty, @,).




Gronwall inequality yields
e x(tty x| <K | x, [T telt,. @,).
le.
[ x(t.ty. x,) || <K || x, || e “ 2 telt,.0.).

Since b5 >0 1s arbitrarily and only local result we concern. we choose b= % >0,

and then we have

£ (t-1p) £ (t-19)

| x(t,1,,x,) || =K le 2 <ge ? <g, te[t,.m,).

X,
It follows that @, = by Extensibility Theorem. Since §>0 and 5>0 are

independent of 7,20, x=0 1s uniformly asymptotically stable, in fact it 1s

exponentially stable. o




Theorem 10.3 (Unstability Theorem) Let g(z,x) 1s continuous and locally
Lipschitzin U containing the origin. If

lim L&D _
=0 | x|

holds uniformly in ¢, where 1>7,>0 and 4 has at least one eigenvalue with

positive real part. 1.e. ReA; (4)>0,then x=0 of(10.4) is unstable.

(Proof 1s omitted)




Linearization

Let us go back to the nonlinear system

x'= f(x), (10.5)

where f:D —>R" is C' and £(0)=0. Then we write (10.5) by Tailor expansion

as
f(x)=Ax+g(x). (10.6)

where

A=Df(0).and 111‘11{}|||ﬁ(1")|
-0 || x

Theorem 10.4 (Linearization)
1. The origin of (10.6)1s AS1f A4 1s Herwitz.

2. The origin of (10.6) 1s unstable 1f Re A, >0 for one or more of the eigenvalues

of 4.




Proof. Let A4 be a Hurwitz matrix. Then. by Theorem 10.1. for any positive definite

symmetric matrix (., the solution P of the Lyapunov equation (10.2) is positive
definite. We take

V(x)=x"Px
as a Lyapunov function candidate for (10.6). The derivative of 7 (x) along the

trajectories of (10.6) 1s given by

Viix)=x"PlAx+g(x)]+[x 4T + g7 (x)]Px=x"(PA+ A" p)x +2x"Pg(x)

=—x"0x+2x"Pg(x).
Since ”l|imo | ﬁ(xH) | =0, there exists » >0 for any given b >0 such that
x||— X

lg)[[<blx]. V]x|<e.




Hence,
V'(x)<—x"Qx +2b| Pllx|’. V|x|<s.
but

r 2
X Ox 22, (O) x|
Note that A__(Q) 1s real and positive since Q 1s symmetric and positive definite.

Thus
V'(x) < = [A (@) =2B[| P[] x[*. V|x|<&.

A in(O)

nun

Choosing b <—
2| P

ensures that 7'(x) is negative definite. By Theorem 9.1, we

conclude that the origin of (10.6) 1s AS.




To prove the second part of the theorem. let us consider first the specific case
when 4 has no eigenvalues on the imaginary axis. Then there exists an invertible

matrix 7 such that
rario| 0
L0 4,

where 4, and 4, are Hurwitz matrices. The change of variables

transforms (10.6) into the form

where g () satisfies

g, ()| <b|z], V|z|<e. j=12.




Let O, and Q, be positive definite symmetric matrices. Solving
Tp _ .
PA+A4;P=-0,. j=1L2.

yields a unique positive definite solutions P, and P,. Let

P 0
V(z)=z{Pz,—z1Pz, :T[O P }:.
2

In the subspace z,=0. V/(z) >0 atpomts arbitrarily close to the origin. Let

U={zeR"| |zll€¢ and V(z)>0}.




In U,
Vz)=-z iT(PlAl +4 fPl)zl +2z fPlgl(Z)—Z g(PzAz +4 gpz)zz —2z nggz(:')

Pg,(2)
=z/0,z,+250,z, +2ZT[ el

~P,g,(2)

2 Aia O 2, II° +2,5,(Q5) 1 2, [I” 2] ZII\/IIP} Pl I +11P, 1% g, (2) I

>(a—2N28b) | 2.
where

a =minid,, (0)). 4,,(0y)5 - f=max{[| P [|.[| P[]

(94

225

9.3. the origin of (10.6) 1s unstable.

Thus. choosing b < ensures that 7'(z)>0 m U . Therefore, by Theorem




Let us study now the general case when 4 may have eigenvalues on the
immaginary axis meanwhile 4 has eigenvalues with positive real parts. By a simple
trick of shifting the imaginary axis, we suppose that 4 has m eigenvalues with

: 5 : . :
Re A, >&>0. Then, the matrix A —(EI has m eigenvalues in the open right-half

plane, but no eigenvalues on the imaginary axis. Then, there exist P =P’ and

O =0" such that
o S .7
P(A-—D+(4—-—=1) P=0.
2 2
where V' (x)=x"Px>0 at points arbitrarily close to the origin. The derivative of

J'(x) along the trajectories of (10.6) 1s given by




V'(x)=xT(PA+ A p)x +2x"Pg(x)
T 5 5 T T T
=X [P(A—EI)+(A—EI) Plx+6x" Px+2x" Pg(x)

—x"Ox+ SV (x)+2x" Pg(x) .
In the set
U={xeR"|||x||<e& and V(x)>0},

where & 1schosensuchthat ||g(x)|<b| x| for [[x|<e. V'(x) satisfies
V'(x) 2 A Q) | x |7 2| Pl | x ][] () | > (2, (@) =25 | P ) [ x|

Aia(Q)
2| Pl

which 1s positive definite if 5 < . The origin of (10.6) 1s unstable. o




Remark 10.2 Theorem 10.3 does not say anything about the case when ReA, <0

for all j.with Red, =0 for some ;. In this case, linearization fails to determine

stability of equilibrium. Center manifold theory may apply.

Example 10.1 For x'=gx’, where a is a parameter. Linearization yields

A=Df(0)=3ax*|_,=0.

Hence, linearization fails. This failure 1s essential in the sense that x =0 could be
AS. stable. or unstable. depending on the value of the parameter « .

Take 7 (x)=x">0 asa Lyapunov function. 7'(x)=4ax®. Then,
If a<0. V'(x)<0 = x=0 1sAS . If a=0. V'(x)=0 = x=0 1s stable. If

a>0, I(x)>0 = x=0 1sunstable.




Example 10.2 Consider

X =, —x, (x4 xd) s X = x (] +x)).

0
where A4=D f(0) _(l 0 ] has A=+i with ReA(4)=0. Since x=0 1s a center

of x'=Df(0)x. 1t is stable but not asymptotically stable.

Introducing the polar coordinate transformation

x,=rcos@. x,=rsiné,

dx dx, dr dx, dx, ,de

we have (x, — +x, =r—: x,———x,——=1r"—— The detail leaves for
dt dt dt dt  ° dt dt
students)
ﬂ:O; ﬁ=1+1‘2.
dt dt

Solving the equations yields the solution: 7(#)=7,. So x=0 is still stable (x=0

1s a center of the original equations).




Summary

1. Lyvapunov stability for linear autonomous systems has two methods both by an
eigenvalue approach and Lyapunov matrix approach.

2. Linearization works for hyperbolic type of equilibrium and for local results. Is 1t
possible for global one? It 1s no in general! However it 1s yes conditional! It

needs further study.

3. Lyapunov Matrix equation gives a way to find a Lyapunov function. How about
for general case? It is refers to Lyapunov converse theorem.




Homework

m Review today’s contents of class.
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